

Disclosures

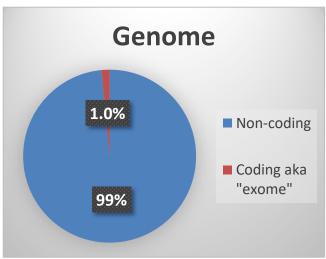
- Advisory board Actio, Natera, Novartis, Travere, Vera, Vertex, Calliditas
- Stock options: Actio

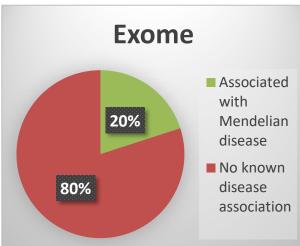
Patient Questions

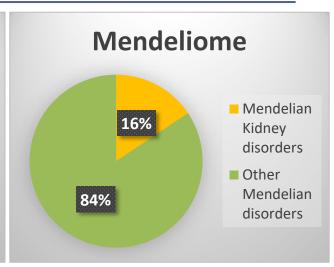
- What is this disease?
- Why do I have this disease?
- What will happen to me?
- What are the treatment options?


• "Doctor, should we perform genome sequencing to answer some of these questions?"

The Human Genome Sequence

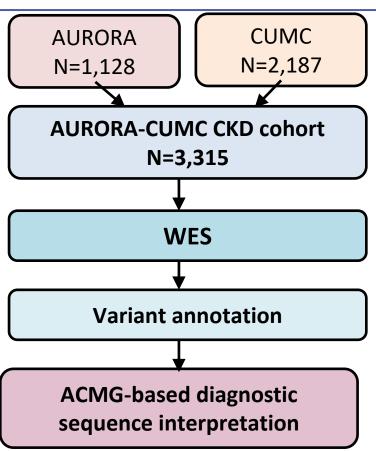

Science Feb 16 2001 & Nature, Feb 15, 2001


The human genome has ~ 3 billion nucleotides (letters)

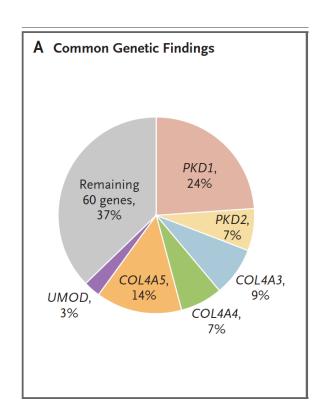


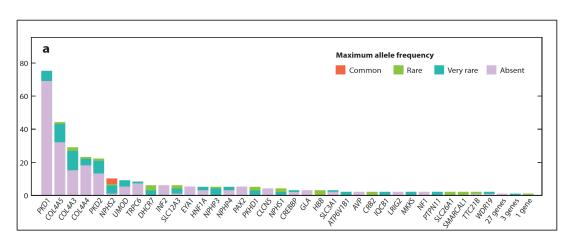
DNA sequencers can read genomes in 24 hrs

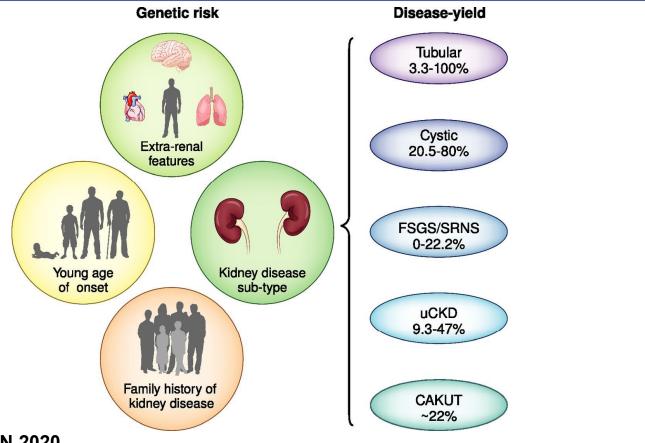
Targets for Sequencing



There are ~20,000 genes in our genome. The coding portion of genes is called the "exome"


Of the ~20,000 genes, ~4700 are associated with a Mendelian Disorder ("Mendeliome") Of the ~4700
Mendeliome genes,
~600-700 are associated
with a Monogenic
nephropathy
("Nephrome")


Utility of Whole Exome Sequencing in Adults with CKD

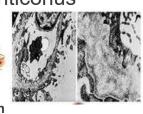

Characteristic	AURORA Cohort (N=1128)	CUMC Cohort (N=2187)	Overall Study Population (N=3315)	
	number of patients (percent)			
Age at time of study entry				
0–21 yr	0	278 (12.7)	278 (8.4)	
22-44 yr	0	713 (32.6)	713 (21.5)	
45–64 yr	560 (49.6)	800 (36.6)	1360 (41.0)	
≥65 yr	568 (50.4)	396 (18.1)	964 (29.1)	
Sex				
Female	427 (37.9)	945 (43.2)	1372 (41.4)	
Male	701 (62.1)	1242 (56.8)	1943 (58.6)	
Race or ethnic group†				
White	1023 (90.7)	1113 (50.9)	2136 (64.4)	
Hispanic	50 (4.4)	435 (19.9)	485 (14.6)	
Black	18 (1.6)	330 (15.1)	348 (10.5)	
Asian	20 (1.8)	224 (10.2)	244 (7.4)	
Other or unspecified	17 (1.5)	85 (3.9)	102 (3.1)	
Clinical diagnosis				
Congenital or cystic renal disease	159 (14.1)	372 (17.0)	531 (16.0)	
Glomerulopathy	231 (20.5)	1180 (54.0)	1411 (42.6)	
Diabetic nephropathy	184 (16.3)	186 (8.5)	370 (11.2)	
Hypertensive nephropathy	193 (17.1)	126 (5.8)	319 (9.6)	
Tubulointerstitial disease	212 (18.8)	32 (1.5)	244 (7.4)	
Other	50 (4.4)	109 (5.0)	159 (4.8)	
Nephropathy of unknown origin	99 (8.8)	182 (8.3)	281 (8.5)	
End-stage renal disease‡	1128 (100.0)	1016 (46.5)	2144 (64.7)	
Family history of kidney disease	_	619 (28.3)	_	

ES Provides a Diagnostic Yield of 9.3% in patients with CKD, N = 3,315

Clinical Predictors of Diagnostic Yield

Enrico Cocchi et al. CJASN 2020

Case Studies

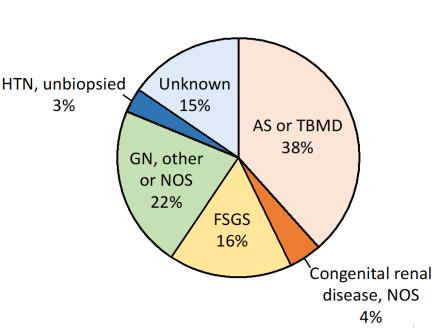

Case

- 46 yo woman with newly diagnosed kidney disease with blood & protein in urine
- Family hx of kidney disease in 2 uncles
- Kidney biopsy: focal segmental glomerulosclerosis (FSGS)
- Exome Sequencing reveals diagnosis of Xlinked Alport Syndrome
- Treatment: avoid steroids, refer for new clinical trial
- Screen family members at risk

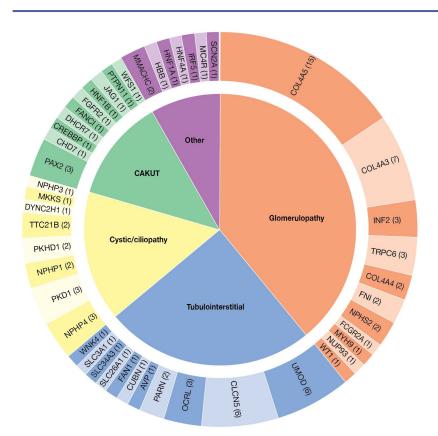
Clinical presentation of Classic Alport syndrome

- Hematuria
- Sensorineural hearing loss
- Pathognomonic findings on kidney biopsyAnterior lenticonus

Genes:

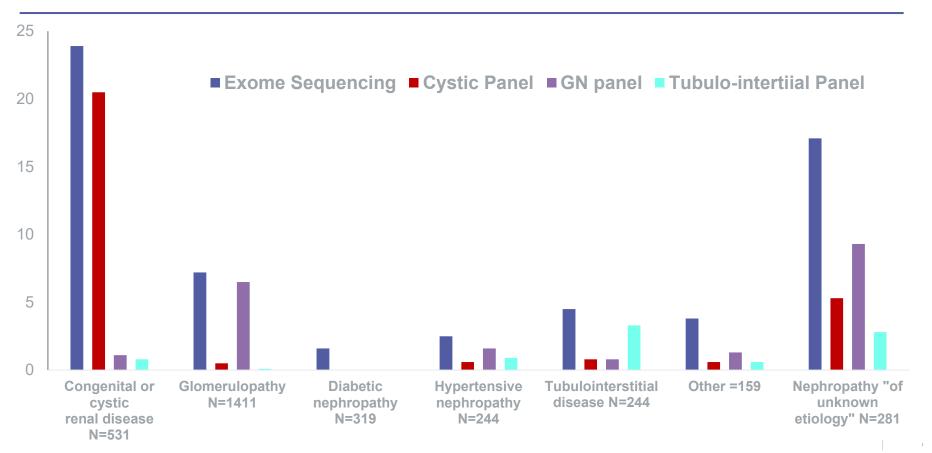

- Chr. 2 COL4A3 Dom & Rec
- Chr. 2 COL4A4 Dom & Rec
- Chr. X COL4A5 X-Linked

Case Studies


Case

- 46 yo with newly diagnosed kidney disease with blood & protein in urine
- Family hx of kidney disease in 2 uncles
- Kidney biopsy: focal segmental glomerulosclerosis (FSGS)
- Exome Sequencing reveals diagnosis of Xlinked Alport Syndrome
- Treatment: avoid steroids, refer for new clinical trial
- Screen family members at risk

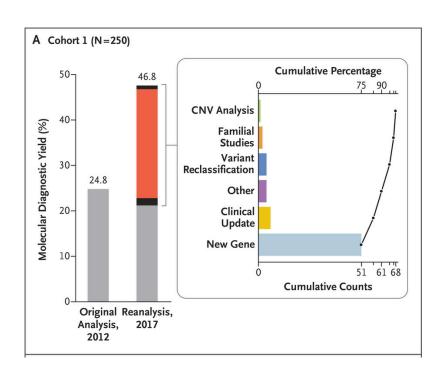
Phenotypes Associated with COL4A3, COL4A4, or COL4A5 pathogenic variants

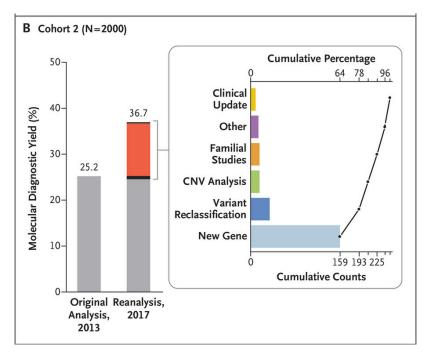

CKD of Unknown Cause

Review of 6 exome sequencing studies of CKD:

- 443 patients
- 22% diagnostic rate
- 47 genetic diagnoses made, of which 29 (62%) represented singleton diagnoses unique to one patient
- COL4A3-5 mutations accounted for onethird of cases

Diagnostic Performance of Exome vs. Panel Sequencing




Groopman EE, Marasa M., et al. NEJM 2019

What To Do With a Negative Genetic Test?

- Consider blind spots in sequencing assay
 - Genes or exons not captured /covered
 - Classes of mutations not readily surveyed by NGS: CNVs, indels, mosaicism, retrotransposition, VNTR
 - Non-coding variants
- Consider periodic reanalysis of data
- Consider alternative inheritance models: e.g. polygenic
- Non genetic causes

Systematic Reanalysis Increases Diagnostic Yields

Genetics in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference

OPEN

KDIGO Conference Participants¹

Conditions amenable to specific diseasemodifying therapies

Examples:

- GLA (Fabry)
- AGXT (primary hyperoxaluria [PH])
- CoQ10 genes (SRNS)
- CTNS (cystinosis)
- Tubulopathies (Na+, K+, etc.)

Conditions amenable to nonspecific renoprotective strategies

Example:

COL4A3/4/5 (Alport)
 and BAAS blockade

Avoidance of prolonged immunosuppressive therapies

Example:

 Glomerular disease due to mutations in Alport genes (COL4A3/4/5)

Conditions at risk for recurrence after kidney transplantation

Examples:

- (CFH/CFI/C3..): aHUS
- (AGXT, GRHPR, HOGA): primary hyperoxaluria (PH)
- Adenine phosphoribosyltransferase deficiency (APRT)

Conditions amenable to specific screening for extrarenal manifestations

Examples:

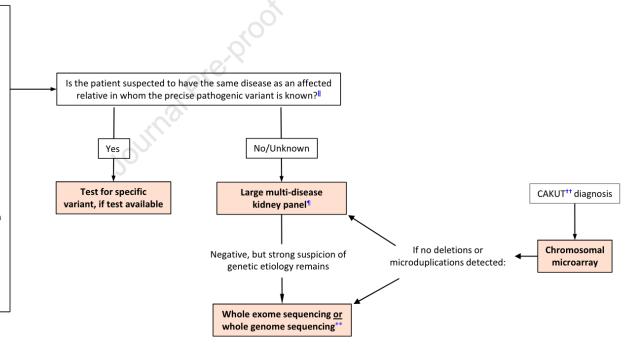
- HNF1B: diabetes
- PKD1/PKD2
 (ADPKD): intracranial aneurysms
- FLCN: renal cell carcinoma, etc.

Conditions for which genetic testing is relevant for reproductive counseling

Example:

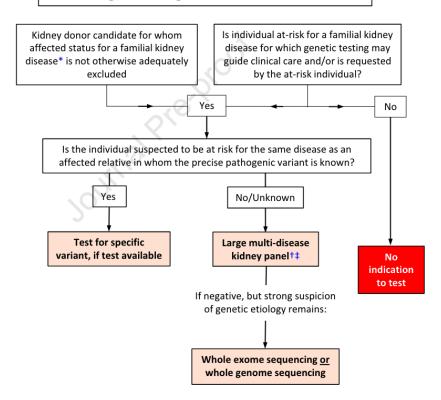
 Prenatal/preimplantation diagnosis

Figure 4 | **Actionable genes in kidney diseases.** Actionability refers to the potential for genetic test results to lead to specific clinical actions for prevention or treatment of a condition, supported by recommendations based on evidence. ADPKD, autosomal dominant polycystic kidney disease; aHUS, atypical hemolytic uremic syndrome; RAAS, renin–angiotensin–aldosterone system; SRNS, steroid-resistant nephrotic syndrome.


SYMPTOMATIC ADULT and PEDIATRIC PATIENTS

General recommendation for genetic testing

Genetic testing is indicated in all kidney-related abnormalities* where genetic etiology is considered after appropriate clinical evaluation.


Specific recommendations for genetic testing

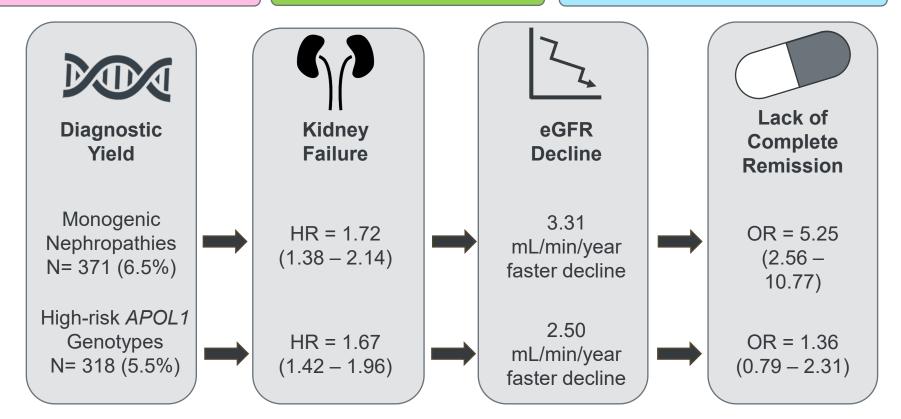
- Family History (see[†])
- · Multi-organ syndrome of unknown etiology
- Atypical clinical disease, to guide therapeutics, or is requested by the individual (reasons may include prognostication, family planning, etc.)
- Kidney biopsy findings suggestive of a genetic cause (e.g.):
 - Chronic TIN[‡] with crystals[§]
 - FSGS without obvious secondary causes
 - Features suggestive of collagen IV nephropathy
 - TMA or idiopathic MPGN
 - Lipidoses
- CKD/ESKD of unknown etiology after a comprehensive clinical evaluation if ANY of the following criteria are met:
 - Age < 50 years
 - Patient's blood relative is considering kidney donation
 - Diagnosis may aid in management of extra-renal manifestations
- Evaluation of patients with atypical cystic kidney or liver disease and no family history
- Testing will end a diagnostic odyssey
- · Test is for kidney donor evaluation

AT-RISK ADULT and PEDIATRIC INDIVIDUALS

Prior to testing at-risk individuals, it is preferred to establish genetic diagnosis in the affected relative.

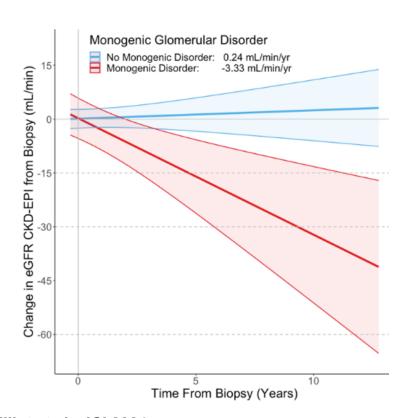
Patient Questions

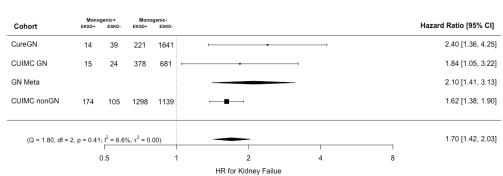
- What is this disease?
- Why do I have this disease?
- What will happen to me?
- What are the treatment options?

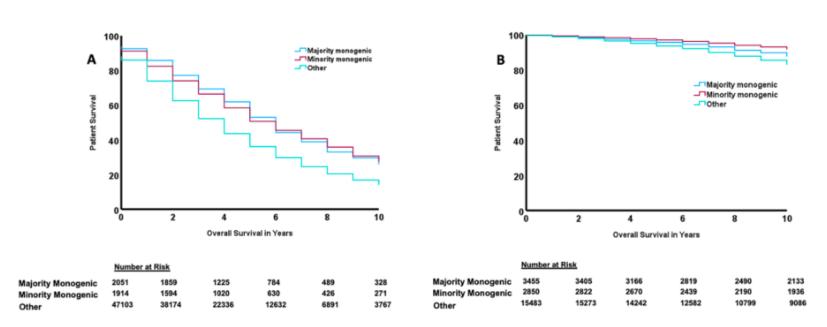

 "Doctor, should we perform genome sequencing to answer some of these questions?"

Genome or Exome Sequencing of 5,727 Patients with CKD

CureGN: N= 1913


Columbia-GN, N=1098


Columbia-CKD, N= 2716


Mean follow up time 2-5 years

Monogenic Disorder have a Faster Progression to ESKD (5734 adults and children with kidney disease)

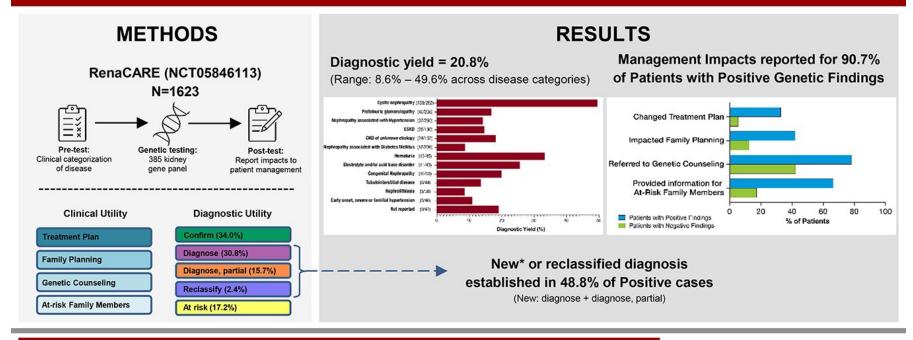

Patients with Genetic Diseases May Have Reduced Mortality after Kidney Failure

Figure 2. Unadjusted Kaplan Meier curves for patient survival after starting kidney replacement therapy – (**A**) dialysis, (**B**) kidney transplant.

The Clinical Utility of Genetic Testing in the Diagnosis and Management of Adults with Chronic Kidney Disease

CONCLUSION: Genetic testing with a CKD-focused 385-gene panel substantially refined clinical diagnoses and had widespread implications for clinical management.

doi: 10.1681/ASN.00000000000000249

Examples of Monogenic Kidney Diseasewith Specific Therapies

Syndrome	Gene(s)	Therapy	
Liddle Syndrome	SCNN1A, SCNN1B or SCNN1G	Amiloride	
Pseudohyperaldosteronism type II	KCNJ5	Thiazide diuretics	
Corticosteroid remediable aldosteronism	CYP11B2/CYP11B1 gene fusion	Glucocorticoids	
Familial Hyperaldosteronism, type II	CLCN2	Aldosterone antagonists	
Familial Hyperaldosteronism, type III	KCNJ5	Aldosterone antagonists	
Fabry Disease	GLA	Alpha-galactosidase enzyme replacement	
COQ10 deficiency	COQ2, COQ6, ADCK2/COQ8B, PDSS2, or MTTL1	CoQ10 replacement	
Primary Hyperoxaluria 1	AGXT	RNAi therapy	
APOL1 associated nephropathy	APOL1	Clinical trials ongoing	

A 12-gene pharmacogenetic panel to prevent adverse drug reactions: an open-label, multicentre, controlled, clusterrandomised crossover implementation study

Jesse J Swen, Cathelijne H van der Wouden*, Lisanne EN Manson*, Heshu Abdullah-Koolmees, Kathrin Blagec, Tanja Blagus, Stefan Böhringer,
Anne Cambon-Thomsen, Erika Cecchin, Ka-Chun Cheung, Vera HM Deneer, Mathilde Dupui, Magnus Ingelman-Sundberg, Siv Jonsson,
Candace Joefield-Roka, Katja S Just, Mats O Karlsson, Lidija Konta, Rudolf Koopmann, Marjolein Kriek, Thorsten Lehr, Christina Mitropoulou,
Emmanuelle Rial-Sebbag, Victoria Rollinson, Rossana Roncato, Matthias Samwald, Elke Schaeffeler, Maria Skokou, Matthias Schwab,
Daniela Steinberger, Julia C Stingl, Roman Tremmel, Richard M Turner, Mandy H van Rhenen, Cristina L Dávila Fajardo, Vita Dolžan, George P Patrinos,
Munir Pirmohamed, Gere Sunder-Plassmann, Giuseppe Toffoli, Henk-Jan Guchelaar, on behalf of the Ubiquitous Pharmacogenomics Consortium†

Gene	PREPARE drug for which actionable DPWG guideline is available	
CYP2B6	Efavirenz	
CYP2C9	Phenytoin Warfarin	
CYP2C19	Citalopram Clomipramine Clopidogrel Escitalopram Imipramine Sertraline Voriconazole	
CYP2D6	Amitriptyline Aripiprazole Atomoxetine Clomipramine Codeine Doxepin Flecainide Haloperidol Imipramine Metoprolol Nortriptyline Paroxetine Pimozide Propafenone Tamoxifen Tramadol Venlafaxine Zuclopenthixol	
CYP3A5	Tacrolimus	
DPYD	5-Fluorouracil, Capecitabine, Tegafur	
F5	Estrogen contraceptive, agents	
HLA-B	Carbamazepine Oxcarbazepine Phenytoin, Lamotrigine, Abacavir, Flucloxacillin	
SLCO1B1	Atorvastatin, Simvastatin	
TPMT	6-Mercaptopurine Azathioprine Thioguanine	
UGT1A1	Irinotecan	
VKORC1	Acenocoumarol, Phenprocoumon, Warfarin	

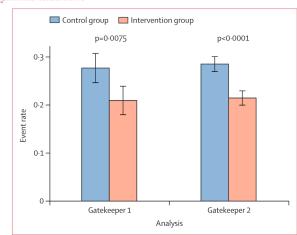
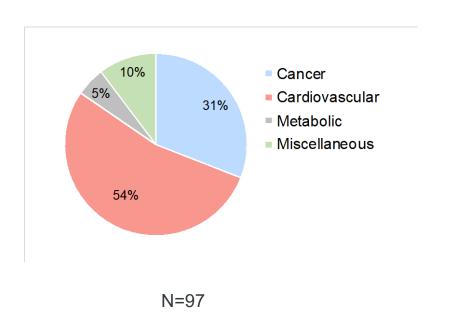


Figure 2: Frequency of causal clinically relevant adverse drug reactions in patients with an actionable test result

Error bars represent 95% CIs for event rates. p values for intergroup differences were based on the mixed-effects models used in the primary analysis. An actionable test result was defined as a drug-gene interaction for which the Dutch Pharmacogenetics Working Group guidelines recommended a change to standard-of-care drug treatment.

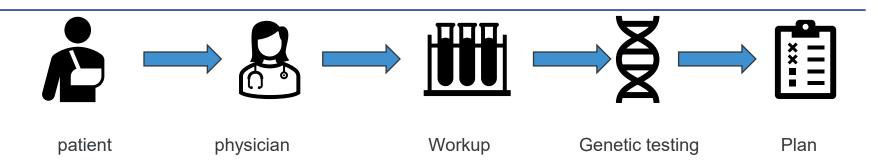
Population Pharmacokinetic Model for Tracrolimus Dosing

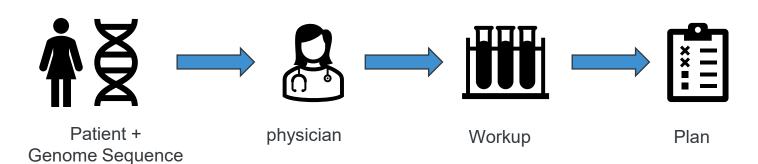

A prospective controlled, randomized clinical trial of kidney kidney transplant recipients developed personalized tacrolimus dosing using model-based Bayesian Prediction. Methods and cohort **Findings** Clinical trial: Two-arm, Randomized, Open-label, single-center Secondary endpoints (90 days of follow-up): **Primary endpoint:** Designed as a superiority study (30%) Proportion of patients within **OPTIMUS** Patients achieved faster tacrolimus therapeutic therapeutic target in the first target concentration (6-10 ng/mL) steady-state (30% margin): 5 days (PPK) vs 10 days (Control) pen 05 Kidney Transplant Recipients Patients showed less intra-patient variability Basiliximab, MMF and steroids Day 0 20.8% 24.7 (PPK) vs 35.8 (Control) P<0.05 54.8% Intervention Patients had a lower number of dose modifications N=50 N=46 1 (PPK) vs 2.6 (Control) P<0.05 Control PPK model Tacrolimus dosage following Tacrolimus dosage following There was a lower percentage of patients with Manufacturer's labelling CYP3A4 & CYP3A5 genotype overexposure or infraexposure to tacrolimus Control 26% (PPK) vs 55% (Control) P<0.05 **399** in target (6-10 ng/ml) Next doses calculation: No statistically significant differences were out of target observed in clinical outcomes Previous Tac Co CYP3A4 & CYP3A5 genotype, Age and hematocrit Lloberas et al. 2023 CONCLUSION: PPK-based tacrolimus dosage offers significant superiority for starting tacrolimus prescription over the classical labelling-based dosage according to the body weight, which may optimize Tac-based therapy since the first days after transplantation.

Exome Sequencing & Incidental Findings in 1-2% of the population

American College of Medical Genetics and Genomics

ACMG STATEMENT Genetics in Medicine


Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics


Table 2	Semiguantitative	metric to score	clinical actionability	

Domain	Scores
Severity: what is the nature of the threat to health to an individual carrying a clearly deleterious allele in this gene?	3 = Reasonable possibility of sudden death 2 = Reasonable possibility of death or major morbidity 1 = Modest morbidity 0 = Minimal or no morbidity
Likelihood of disease: what is the chance that a serious outcome will	3 = >40% chance
materialize given a deleterious variant (akin to penetrance)?	2 = 5–39% chance
	1 = 1–4% chance
	0 = <1% chance
$\textbf{Effectiveness of specific interventions:} \ \text{how effective is the selected, specific}$	3 = Highly effective
intervention for preventing or significantly diminishing the risk of harm?	2 = Moderately effective
	1 = Minimally effective
	0 = Controversial or unknown effectiveness
	IN = Ineffective/no intervention ^a
Nature of intervention: how risky, medically burdensome, or intensive is a	3 = Low risk, or medically acceptable and low-intensity interventions
given intervention?	2 = Moderate risk, moderately acceptable or intensive interventions
	1 = Greater risk, less acceptable and substantial interventions
	0 = High risk, poorly acceptable or intensive interventions
State of the knowledge base: what is the level of evidence?	A = Substantial evidence, or evidence from a high tier (tier 1)
	B = Moderate evidence, or evidence from a moderate tier (tier 2)
	C = Minimal evidence, or evidence from a lower tier (tier 3 or 4)
	D = Poor evidence, or evidence not provided in the report
	E = Evidence based on expert contributions (tier 5)
Do not score the remaining categories.	er at. Al, Genet Med 2016

Current Paradigm

Future Paradigm

Summary

- Monogenic kidney diseases may be present in ~10% of CKD patients
- The prevalence of genetic disease varies by age, family history and clinical diagnosis, and referral population studied
- The detection of genetic disease has many implications for disease management, including therapy
- Other useful information in genetic testing include risk alleles, carrier screening and pharmacogenetics
- Predictive testing for kidney disorders will require better curation of variant databases and may need to be restricted to selected, well studied genes

Online Resources

- Online Mendelian Inheritance in Man (OMIM.org)
- GeneReviews (NCBI Bookshelf)
- MedlinePlus/Genetics (formerly genetic home reference, National Library of Medicine)
- National Organization for Rare Disorders (NORD)
- ClinGen (clinicalgenome.org)
- American Society Medical Genetics